Phân tích dữ liệu? Top công cụ tốt nhất cho Nhà Phân tích Dữ liệu
Phân tích dữ liệu là gì?
Trước tiên, chúng ta cần làm rõ khái niệm về Data Analysis – phân tích dữ liệu là gì? Nói một cách ngắn gọn, phân tích dữ liệu là quá trình chọn lọc dữ liệu; rồi sau đó tìm kiếm, thu thập thông tin quan trọng và tổng hợp số liệu dựa trên số lượng lớn các thông tin hỗn độn.
Bạn có thể hiểu theo cách đơn giản, đây là quá trình chuyển dữ liệu thô thành dữ liệu có thể dùng được và đưa đến kết luận.
Quy trình phân tích dữ liệu giờ đây, được tự động hóa thành quy trình và thuật toán để chuyển từ số liệu thô thành dữ liệu dùng được.
Kỹ thuật phân tích giúp chúng ta tổng hợp dữ liệu và đưa đến kết luận cuối cùng. Thông tin này có thể sử dụng để tối ưu hóa các quy trình và tăng hiệu quả tổng thể của doanh nghiệp trong việc quản lý toàn bộ hệ thống.
Top công cụ tốt nhất cho nhà phân tích Dữ liệu
1️. Lập trình R
Lập trình R là một công cụ rất mạnh cho học máy, thống kê và phân tích dữ liệu. Nó là một ngôn ngữ lập trình và bạn hoàn toàn có thể phân tích dữ liệu với R. Ngôn ngữ R là một platform-independent do đó chúng ta có thể sử dụng nó cho bất kỳ hệ điều hành nào.
Việc cài đặt R cũng miễn phí vì thế chúng ta có thể sử dụng mà không cần phải mua bản quyền.
ƯU ĐIỂM:
- Công cụ dẫn đầu trong ngành Phân tích, được rộng rãi sử dụng trong việc mô hình hóa Dữ liệu.
- Thao tác dễ dàng với dữ liệu của bạn và trình bày chúng theo nhiều cách khác nhau.
- Sử dụng SAS về Dung lượng Dữ liệu (Data Capacity).
- Chạy trên đa nền tảng (UNIX, Windows và MacOS).
- Có hơn 11,556 packages có thể được cài đặt tự động theo nhu cầu của người dùng.
2. Tableau
Tableau là công cụ thực hiện các nghiệp vụ phân tích một cách nhanh chóng, đơn giản và trực quan dành cho tất cả mọi người.
Đối với các phòng ban nghiệp vụ, để sử dụng dữ liệu để định hướng các hoạt động kinh doanh phải cần một môi trường có thể phân tích và xử lý dưới dạng đồ họa
Tuy nhiên nhiều trường hợp, để làm được điều đó thì cần phải có kỹ năng và kiến thức lập trình, nên có rất nhiều yêu cầu phân tích, report gửi đến phòng IT hoặc phòng ban chuyên môn .
ƯU ĐIỂM:
- Có phiên bản miễn phí.
- Có thể tương tác với bất kì loại dữ liệu nào từ Excel, Data Warehouse cho tới Dữ liệu Website.
- Khả năng cập nhật Dữ liệu theo thời gian thực.
- Làm Dữ liệu trở nên trực quan bằng nhiều cách như Biểu đồ hay thậm chí là cả một Dashboard – Tốt hơn bất kỳ phần mềm mềm nào khác trên thị trường.
- Hệ thống xử lý Big Data của Tableau rất mạnh mẽ.
3. Python
Python là một ngôn ngữ lập trình scripting phổ biến và hết sức thú vị. Nó không phải ngôn ngữ có tốc độ thực thi nhanh như Assembly, C, C++…
Nó được chọn làm ngôn ngữ lập trình đầu tiên để dạy cho những người chưa biết lập trình hoặc thanh thiếu niên. Google, Microsoft, và nhiều tập đoàn, công ty tin học sử dụng để vận hành hệ thống dịch vụ của mình.
Các nhà nghiên cứu khóa học, nhà phân tích dữ liệu lớn cũng thích sử dụng Python cho công việc của mình, vì nó được việc, không màu mè, học nhanh, dùng luôn.
ƯU ĐIỂM
- Được đánh giá là dễ học, dễ viết, dễ duy trì và được cung cấp dưới dạng Mã nguồn mở (Miễn phí).
- Có những thư viện học máy (Machine learning) tốt như: Scikitlearn, Theano, Tensorflow và Keras.
- Khả năng thu thập trên nhiều nền tảng như SQL server, tập liệu MongoDB, JSON.
- Xử lý Dữ liệu dạng Văn bản rất tốt.
4. SAS
Đây là một trong những bộ chương trình chuyên dụng phục vụ cho xử lý và phân tích số liệu thống kê rất thông dụng trên thế giới.
SAS rất mạnh trong lĩnh vực quản lý dữ liệu, cho phép người sử dụng thao tác dữ liệu hầu như với mọi cách có thể. SAS cũng đưa vào thủ tục Proc sql cho phép thực hiện mọi câu hỏi Sql (Structured query language) trên file dữ liệu.
ƯU ĐIỂM
- Là môi trường dành cho Lập trình và Ngôn ngữ Thao tác Dữ liệu (Data manipulation) dẫn đầu trong ngành Phân tích Dữ liệu.
- Dễ dàng kết nối, quản trị và phân tích số liệu từ bất kỳ nguồn Dữ liệu nào.
- Có nhiều modules cho web, mạng xã hội và phân tích marketing, hiện đang được sử dụng rộng rãi cho việc hồ sơ hóa khách hàng tiềm năng.
- Có khả năng về dự đoán hành vi, quản lý và tối ưu hóa giao tiếp.